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Abstract
We introduce a user-friendly steady-state visual evoked potential (SSVEP)-based
brain–computer interface (BCI) system. Single-channel EEG is recorded using a low-noise
dry electrode. Compared to traditional gel-based multi-sensor EEG systems, a dry sensor
proves to be more convenient, comfortable and cost effective. A hardware system was built
that displays four LED light panels flashing at different frequencies and synchronizes with
EEG acquisition. The visual stimuli have been carefully designed such that potential risk to
photosensitive people is minimized. We describe a novel stimulus-locked inter-trace
correlation (SLIC) method for SSVEP classification using EEG time-locked to stimulus
onsets. We studied how the performance of the algorithm is affected by different selection of
parameters. Using the SLIC method, the average light detection rate is 75.8% with very low
error rates (an 8.4% false positive rate and a 1.3% misclassification rate). Compared to a
traditional frequency-domain-based method, the SLIC method is more robust (resulting in less
annoyance to the users) and is also suitable for irregular stimulus patterns.

1. Introduction

Steady-state visual evoked potential (SSVEP) is the
electroencephalograph (EEG) response to visual stimulus
flashing at some predefined patterns. For example, when
the retina is excited by a visual stimulus at presentation rates
ranging from 3.5 Hz to 75 Hz [1], the brain generates an
electrical activity at the same (or multiples of the) frequency
of the visual stimulus. SSVEP is strongest in the visual cortex,
when the stimulus is flashing at around 15 Hz [15]. A typical
SSVEP-based BCI system uses lights that flash at various
frequencies. This system can be useful to control a variety of
peripheral devices solely with the EEG, which not only may
improve the quality of life of those who suffer from severe
motor disabilities but can also be employed as a means for
entertainment, such as in video games [10].

Compared to other modalities for brain computer interface
(BCI) applications, such as the P300-based and the slow
cortical response-based BCIs, an SSVEP-based BCI system
has the advantage of better accuracy, higher information
transfer rate (ITR) and short/no training time [10]. However,

similar to other BCI modalities, most current SSVEP-based
BCI techniques also face some challenges that prevent them
from being accepted by the majority of the population. In this
paper we introduce an applicable user-friendly SSVEP-based
BCI system which addresses those drawbacks and has several
advantages, described below.

(1) Ease of use. Traditionally EEG has been recorded
with Ag/AgCl electrodes, which required the use of a
conductive gel; this thus needed long preparation time and
caused discomfort to the user. For better performance,
multi-channel EEG is often used which takes longer to
prepare and adds more discomfort.
For ease of use, an EEG device with a single dry sensor
has been developed. This device does not require any
conductive gel and can be easily put on or taken off
from the subject. To record EEG from a subject, the
experimenter simply puts the EEG cap on the subject and
slightly adjusts the sensor such that it is on the right scalp
location, and then a recording can begin.

(2) Robustness. It will be annoying to the user when a device
controlled by BCI often receives wrong commands and
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changes its function accordingly. Thus, an ideal BCI
system should have high accuracy with low error rates,
including misclassification and false positive rates.
To better evaluate the performance of our BCI system, we
investigate three rates that evaluate different aspects of an
SSVEP-based BCI system: correct light classification rate
(accuracy), misclassification rate and false positive rate.
The latter two rates are measures of error and our objective
is to achieve a high classification rate while keeping the
error rates low.

(3) Safety. Depending on the stimulus’ flashing rate/pattern,
size and color, it is possible that an SSVEP-based
BCI will trigger adverse effects, including seizure, in
photosensitive people. Photosensitivity, an abnormal
EEG response to light or pattern stimulation, occurs in
0.3–3% of the population [5].
When designing our stimulus, the frequency, size, color
and pattern of the flashing lights were carefully chosen
such that the features more provocative to a photosensitive
user are avoided. We will discuss the influence of these
features in more detail in the next section.
When an SSVEP-based BCI system is designed in
consideration of the ease of use, robustness and safety to
the users, its accuracy and information transfer rate may
be diminished. But we deem these features essential for
it to be accepted by the majority of the population and we
show satisfying performance using a novel SLIC method
that is based on stimulus-locked inter-trace correlation in
EEG.

(4) System flexibility. So far most SSVEP classification
algorithms have been developed in the frequency domain.
For example, many researchers have used discrete Fourier
transform (DFT) to extract features for classification, such
as [3, 11]. The frequency-domain-based SSVEP detection
algorithms usually made use of the first [9, 12], or the first
and the second [3, 6], or even the first three harmonics of
the frequency at which the stimulus is presented [13].
However, all frequency-domain-based SSVEP
classification methods have limitations. Oftentimes
the flashing frequency of the visual stimuli cannot be well
controlled due to hardware limitations. For example,
when the visual stimuli are shown on a computer screen,
the refresh rate of the screen and the interference from
the operating system have to be considered. Or when
the visual stimuli are controlled by a microcontroller
whose CPU frequency varies slightly across devices, the
flashing rate of the visual stimuli will inevitably vary as
well. In both of these cases, a more flexible classification
method which does not require prior knowledge of the
flashing frequency of the visual stimulus is desired. It is
also worth noting that some researchers study SSVEP
elicited by visual stimulus with irregular patterns, such
as [4, 18]. A frequency-domain-based method is likely to
fail when this type of stimulus is used.
Müller-Putz et al have adopted a lock-in amplifier in the
time-domain and have shown improved accuracy over
the frequency method [13, 14]. This result suggested
that EEG signal may contain important information about

the flashing stimulus on the time-domain as well, which
makes sense as SSVEP is essentially evoked by a series of
visual stimuli; thus it is strongly locked to the light events.
In [18] the author analyzed EEG in the time domain
by computing the correlation between event-related
potentials time-locked to the stimulus onset and a known
response waveform (template) of the subject. This time-
domain method is able to classify SSVEP elicited by
both regular and irregular patterns of flashes, but prior
knowledge still needs to be used to construct a response
waveform for each subject.
In this study, we propose a novel SLIC method which
analyzes EEG in the time domain by computing the
correlation between single-trial event-related potentials
time-locked to a visual stimulus. This method is able
to correctly classify SSVEP elicited by any type of flash
patterns and it does not require prior knowledge about
the frequency of the flashing stimulus or the response
waveform of a subject. The only information it requires
about the stimulus is the relative timing of EEG and the
stimulus onsets. We will describe in detail in section 2
how we generate this information in our hardware system.

Besides SLIC, in this paper we also implement a
frequency-domain-based method that makes use of the first
and the second harmonics of the stimulus-flashing frequency
in EEG. We show that our SLIC method performs better than
the frequency-domain method.

The rest of the paper is organized as follows: section 2
describes the hardware system, online classification platform,
experimental paradigm, and our SLIC method and
another frequency-domain-based method; section 3 presents
classification performance using different strategies and
parameters; and section 4 summarizes the paper.

2. Methods

2.1. Design of SSVEP-based BCI system

The hardware system consists of an EEG data acquisition
device, a light display box and a computer that analyzes EEG
and lighting information and makes a decision in real time. A
picture of the system together with one user testing the system
is shown in figure 1.

2.1.1. EEG device. The EEG system front end consists of
a dry, active EEG sensor, a dry reference sensor, an ear clip
(ground) and a support board. The size of both sensors is
3 cm in diameter. Previous versions of the sensor have been
described and evaluated in detail in [16, 17]. Metallic spring-
loaded fingers are used on the surface of the active sensor to
penetrate the hair and make an ohmic connection between the
scalp and the sensor. When there is no hair between the sensor
surface and the scalp, the PCB board itself is used as the sensor
surface, such as in the reference sensor. Unlike typical EEG
sensors, our sensors does not require conductive gel. This
makes the experimental setup much easier while creating a
more pleasant user experience.
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Figure 1. A picture of the system being used by a user. The EEG
device is mounted on the right side of the cap. Two sensors (one
active and one reference) are placed on the user’s head inside the
EEG cap and are connected to the EEG support board. An ear clip
that clips on to the right ear provides the ground to the support board.
A serial wire sends EEG data to a controller circuit board inside the
light box. The controller circuit board controls the four lights
on the facade of the light box to flash at different frequencies,
combines the EEG and light control signals while preserving the
relative timing between the two, and sends them to the laptop
computer through a serial port. The laptop computer implements the
online classification and displays the visual feedback. On the
computer screen a black square with four circles is shown which
resembles the actual light box. If a circle turns green from white,
that means the computer has decided that the corresponding light
array on the light box is being attended by the user. The raw EEG
data are shown on the top right side of the screen, and text
information of the classification result is shown on the bottom right
side.

(This figure is in colour only in the electronic version)

The EEG sensor was placed over PO2 which is close to
the visual cortex and the SSVEP signal is strong [20], and the
reference sensor was placed on the right side of the forehead.
Both of these sensors were mounted on the inside of a skull cap
with the subject grounded to the EEG system through an ear
clip. These sensors and ground clip are connected to a support
circuit board that processes the EEG data and is attached to
the outside of the same cap. The support board communicates
the processed data to a light controller circuit board through a
serial wire.

2.1.2. Light display. Inside the light display box there is a
controller circuit board which is responsible for driving four
flashing LED lights mounted on the facade of the light display
box. The frequency of the flashing is set by the controller
circuit board. We chose to implement just four lights as a
proof-of-concept. The EEG data and light control signals are
combined while preserving the timing information between
the two and sent to a laptop computer through a serial port.

When designing our light stimulus, special care was taken
to minimize the potential risk to the photosensitive population.
They include the following.

(1) The size of each light array is small (2.5 cm in diameter)
such that it only occupies a very small portion of the visual
field so is less provocative [5].

(2) The color of the lights is green, as studies show red,
especially saturated red at wavelengths of 660–720 nm, is
more provocative [5, 19].

(3) The pattern of our lights are dots, which are less
provocative than stripes or gratings [5].

(4) It has been shown that when presented with flashing lights
at 15–25 Hz, photosensitive subjects showed increased
rate of EEG photosensitive responses [5, 7]. In our system
we selected the frequencies of the four lights to be 9 Hz,
10 Hz, 11 Hz and 12 Hz to produce a strong SSVEP signal
[15] and reduce the risk to the subjects.

2.1.3. Real-time computation. A real-time classification
algorithm was developed on a modular Matlab-based platform,
called NeuroSkyLab, which was created for online EEG
acquisition, analysis and presentation. NeuroSkyLab decodes
the EEG and lighting information received from the computer
serial port, performs data analysis (including filtering and
classification) and outputs classification result onto the
computer screen in real time. On the computer screen,
the raw EEG data and the classification result are shown. The
classification result can be one of the three conditions: (1) a
movement is detected, (2) the subject is not looking at any
lights and (3) the subject is looking at a specific light. A
graphical output which mimics the light display box is also
shown on the screen, and when it is determined that a light
is being attended, the corresponding circle in the graphical
output turns from white to green (please refer to figure 1).

2.2. Experiment paradigm

Fourteen subjects (12 male, 2 female, aged 23–55) volunteered
for the experiment. All subjects had normal or corrected-to-
normal vision. They were seated in an armchair in front of
the light display box. Before recording they adjusted their
distance to the light display box such that the lights were most
comfortable to their eyes. The minimal distance from their
eyes to the light display was 25 cm. Their brain response
was recorded with our single dry-sensor EEG device with a
256 Hz sampling frequency in an office setting with regular
fluorescent lightings. The active sensor was placed on the scalp
location PO2 according to the international 10–20 system. The
reference sensor was placed on the right temple and the right
ear lobe served as the ground via an ear clip. No conductive gel
or water was used. For each subject the experimental paradigm
consisted of two steps: a real-time SSVEP classification
followed by an offline data acquisition process. During the
real-time detection, the frequency-domain-based method was
briefly tested to verify that our BCI system is able to correctly
classify their SSVEP and the corresponding circle on the
computer screen turns green. Out of the 14 subjects, 12 of
them could control the output on the computer screen to some
degree. These 12 were ‘good subjects’ and the performance
of our algorithm, including accuracy and error rates, was
measured based on their data.

During data acquisition for offline analysis, 30 sessions
of EEG were recorded per subject, with each session lasting
10 s. Among these 30 sessions, 20 sessions were recorded
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Figure 2. Example EEG traces (shown in gray curves) time-locked to the onsets of four different lights, flashing at 9, 10, 11 and 12 Hz,
respectively. The EEG was recorded when the subject was attending to the 10 Hz light for 20 s. The black curves show the mean of the EEG
traces.

when the subject was instructed to attend to one of the four
lights, with each light being attended for five sessions, and
10 sessions were recorded when the subject was instructed
to fixate at the center of the light display box so the
four lights all appeared in their peripheral vision (baseline
condition). Sessions were recorded in random order from each
subject.

2.3. Data analysis

2.3.1. Stimulus-locked inter-trace correlation (SLIC). As
stated before the SLIC method was developed to classify
SSVEP signals. One advantage of SLIC is that it is suitable
for analyzing EEG evoked by both regular (such as fixed
frequency) and irregular/random visual stimuli. It requires
neither prior knowledge about the visual stimulus nor a
response template for the subject. It is also suitable for
conditions in which the timing of the lights cannot be well
controlled. The requirement for this method is the relative
timing between the EEG signal and the repeated light onsets,
along with the EEG signal itself.

This method takes advantage of the fact that when one
focuses on a flashing light, there is an event-related brain
potential time-locked to the stimulus presentation. Thus EEG
can be segmented into multiple traces, with each trace being the
EEG activity recorded between two adjacent stimulus onsets.
Figure 2 shows one subject’s EEG traces while attending to
the 10 Hz light, and each of the four panels shows the traces
as they are locked to onsets of one of the four lights (lashing at

9, 10, 11 and 12 Hz, respectively). The black curves show the
mean of the EEG traces. Note here that each trace is longer
than what should be used for calculation, so the reader can
see that the ending part of each averaged waveform (almost)
repeats its beginning part. When the traces were used in the
SLIC method, the correct time length was used (for example,
100 ms for 10 Hz light). From this figure we can see that when
EEG is segmented into traces locked to the repeated onsets of
the stimulus being attended, there exists significantly higher
inter-trace correlation. In this paper, we used the median value
of the correlation coefficients between all pairs of EEG traces
to measure this correlated activity.

2.3.2. Data analysis process. A flowchart illustrating the
process of our data analysis is shown in figure 3. The overall
process can be broken down into several steps.

• Preprocessing. Upon data acquisition, raw data without
detected movement were filtered by a low-pass FIR
filter with a cut-off frequency at 40 Hz to remove the
high frequency noise. When EEG changed beyond a
predefined threshold, it was assumed that movement
noise contaminated the EEG, so the data were not
processed.

• Feature extraction. Features were extracted based on
the most recent M seconds of filtered data (for example,
M may range from 2 to 6 s). In this step, SLIC was
used for extracting features. We extracted the EEG traces
time-locked to light onsets for each light. For example,
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Figure 3. Flowchart of the data analysis process. It consists of preprocessing, feature extraction, LDA, estimation and decision stages.
More details are discussed in the text.

when we locked the EEG to the 9 Hz light, using a 4 s
time window, 9 × 4 = 36 traces were extracted from
EEG with each trace 1000 ms ÷ 9 Hz = 111 ms long.
The correlation coefficient between every possible pair of
these 36 traces was then computed and the median value
of the correlation coefficients was calculated.
Alternatively, a frequency-domain-based method was
implemented. We did this via Welch’s power spectral
density estimate method [21]. Namely we estimated the
power spectra of M seconds of data, and the power values
at the four base frequencies (9, 10, 11 and 12 Hz in our
case) and second-order harmonics (18, 20, 22, 24 Hz,
respectively) were extracted.

• Linear discrimination analysis (LDA). After features were
extracted using the SLIC method or the frequency-domain
method, they were fed to four LDAs. Each LDA was
a one-versus-the-rest discriminator; the output of each
LDA, Li, i = 1, . . . , 4, was the logistic function of a
weighted sum of all the inputs and ranged between 0 and
1, indicating the likelihood that the corresponding light
was being attended.
For the frequency-domain method, the weights of the
four LDAs were obtained in advance through logistic
regression [8] using other data sets.

Compared to the frequency-domain method which had
eight features as LDA inputs, the SLIC method produced
four features. For simplicity, the four weights for the four
base frequencies in the frequency-domain method were
used for the LDAs in SLIC.

• Estimate. Every SE seconds an estimate was formed based
on the previous M seconds of data. First, the outputs Li

of each of the four LDAs was normalized by dividing
by the sum of the LDA outputs,

∑
Li . If the largest of

these normalized outputs exceeded a threshold T, then the
algorithm tentatively declares that the subject was looking
at the corresponding light.

• Voting for decision. A voting scheme was adopted, such
that if the majority of several recent estimates agreed on
one light, a decision was reached indicating that light
was being attended. The decision was updated every SD

seconds. As the exact time when the viewer starts to look
at a new light is unknown, the decision should be updated
in a timely manner to report the new light. On the other
hand, SD should not be too low, because (1) the EEG will
not change much since the last decision has been made,
so most likely the new decision will remain the same
and (2) the computation takes some time. Based on our
experience, SD = 0.5 or 1 s seems to be an appropriate
selection.
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2.4. Parameter selection

The threshold for the lights, T, is a critical parameter for the
classification algorithm. A lower value of T would make it
easier to reach a non-baseline decision (one light is being
attended) but increase the error rates, such as false detection
and misclassification; while a higher value of T would make it
harder to detect a light being attended. Since the likelihoods,
Li, i = 1, . . . , 4, range between 0 and 1, the range of T
should be between 0.25 and 1. Moreover, optimal T may
vary across subjects. For those subjects that have stronger
SSVEP signals, their T could be set higher to further reduce
errors. However, in spite of the difference in T across subjects,
based on our observation T ranged consistently between 0.28
and 0.40 for the classification algorithm to have a satisfactory
performance for all subjects. During offline analysis, to test
how this threshold affects the algorithm’s performance, we
varied the thresholds such that the same threshold was used
for all subjects consistently, and this value varied between 0.25
and 0.5. Other parameters that may affect the classification
algorithm’s performance include M, SE , SD and whether a
voting scheme was adopted. M should be longer than 1 s
for the classification algorithm to have a smaller-than-1 Hz
resolution. The longer it is, the more robust the algorithm
will be. However, it should also be kept as short as possible
for the classification algorithm to have a fast response time.
The values of SE and SD together with the voting scheme also
determine the robustness and response time of the algorithm.
In general, the estimate should be updated frequently enough
such that EEG dynamics can be captured in a timely manner.
In our experiments, we found that M = 4s with SE = 0.5 s,
SD = 0.5 or 1 s and a 3-out-of-4 (a positive decision is
reached when three out of the four recent estimates agree
on a same light) voting scheme were a good combination of
parameters. In data analysis, we started from these parameters
and measured the classification algorithm’s performance when
different T values were tested; we then varied these parameters
to see how their change affected the performance. The results
will be discussed in section 3.

2.5. Evaluation of algorithm

As we have stated in the Introduction, we consider both
accuracy and error rates important when evaluating the
performance of a BCI system. In other words, an ideal SSVEP-
based BCI system should be sensitive to real SSVEP signals as
well as conservative such that no command would be sent out
by mistake when the subject was not looking at any stimulus.

The performance of our classification algorithm was
measured by three values, which were

• correct light detection rate RD , where one of the four lights
was attended by the subject and detected by the algorithm;

• misclassification rate rM , where one light was being
attended, but another light was detected and

• false positive rate rF , where no light was being attended
but one light was detected.

Other than the above three values, there are two other
rates that also reflect the system performance, one is the false

negative rate (one light was being attended but no light was
detected, an error) which equals 1 − RD − rM ; the other is the
true negative rate (no light was attended and detected) which
equals 1 − rf . Because these two rates can be derived from
RD , rM and rF , and a false negative error is not as annoying to
the user as a misclassification or a false positive error, in this
paper we report the classification performance of our algorithm
using RD , rM and rF . The goal of our algorithm would be to
maximize the light detection rate RD while keeping rM and rF

(error rates) low.
During data acquisition for offline analysis, each session

was 10 s long, where the subjects were looking at a light (or the
center of the display box). The decision of our classification
algorithms was made based on an M-second time window
(M < 10) with an SD-second update rate (SD may range
between 0.5 and 1); thus we had more than one decision for
each 10 s session. For an easy measure of the performance,
we classified each session with a single label, which was
the first non-baseline decision that the classification algorithm
made about that session. If all the decisions about a session
were concluded as baseline we then labeled that session as
‘baseline’.

3. Results

3.1. Classification performance versus the threshold T

As stated in section 2, the threshold T is critical for the
algorithm’s performance. Figure 4 depicts our classification
algorithm’s average performance, including correct light
detection rate RD , misclassification rate rM and false positive
rate rF , as a function of T. T ranged between 0.25 and 0.5
and was the same for all subjects. Note here that we excluded
results from two subjects whose SSVEP could not be detected.
The light detection rate, RD , for these two subjects was
consistently below 20%, so were not included in the group
average result. The performance of these two subjects is
reported later in section 3.4.

If the detection rate were the only measure of our SSVEP
system’s performance, the group average performance is
87.5% for SLIC (T = 0.26) and 82.1% for the frequency-
domain method (T = 0.28). However, at these low T values,
we also see high misclassification rates and false positive rates
which can be annoying to the users. So here we emphasize
again that the goal of our SSVEP classification algorithm was
to maximize the light detection rate (high precision) while
keeping the error rates low.

From figure 4 we see that as the threshold values increased,
all three rates decreased. As T increased from 0.25 to 0.35,
the SLIC method had consistently lower error rates compared
to the frequency-domain method while its light detection rate
was very close to that of the frequency-domain method. For
example, at T = 0.31 (marked by a black vertical line in
figure 4), the SLIC misclassification rate and false positive
rate were both below 10% (1.3% and 8.4%, respectively),
while its average light detection rate was 75.8%; to match
these error rates the frequency-domain-based method had to
employ a threshold of T = 0.34 (marked by the gray vertical
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Figure 4. Classification algorithm’s performance as a function of the threshold T, for SLIC and the frequency-domain-based method.
Results were averaged across the 12 good subjects.

Table 1. Classification performance of the SLIC method and the frequency-domain method across a variety of parameters. Higher R values
are shown in bold comparing the SLIC and frequency-domain method with same parameters.

Method Frequency-domain method SLIC

M(s) 2 3 4 5 6 2 3 4 5 6

SE = 0.5 s No voting 0.44 0.47 0.51 0.52 0.55 −0.29 0.28 0.51 0.59 0.60
2/3 voting 0.48 0.55 0.56 0.56 0.57 0.00 0.52 0.63 0.66 0.65
3/4 voting 0.38 0.56 0.57 0.56 0.57 0.42 0.62 0.66 0.68 0.67

SE = 1.0 s No voting 0.48 0.51 0.55 0.55 0.57 −0.19 0.42 0.55 0.61 0.62
2/3 voting 0.40 0.54 0.57 0.56 0.56 0.41 0.64 0.68 0.69 0.68
3/4 voting 0.28 0.46 0.55 0.54 0.53 0.56 0.63 0.64 0.64 0.65

line in figure 4); however its detection rate was 67.1%, which
was significantly lower than the SLIC result at T = 0.31
(p < 0.01 from the two-tailed Wilcoxon signed-rank test with
12 degrees of freedom). From this figure we can see that
although the detection rates RD were similar, the SLIC method
was significantly more robust. Thus when the error rates
were the same, a higher detection rate could be achieved with
SLIC.

3.2. Classification performance as a function of other
parameters

When we analyzed how the selection of thresholds affected the
classification performance, we adopted M = 4 s, SE = 0.5 s,
SD = 1 s and a 3-out-of-4 voting scheme since previous data
analysis had shown a satisfying result using these parameters.
We have also discussed previously that the selection of these
parameters would affect the algorithm’s performance, such
as the robustness and system response time. In this section,
we study how the change of these parameters influenced the
classification performance.

The algorithm’s performance was measured by a single
value R, where

R = RD − rM − rF . (1)

The thresholds for LDAs were selected based on the two
points in figure 4. The conditions we studied include:

• window length M = 2, 3, 4, 5, 6 s;
• estimate update rate SE = 0.5, 1 s;
• voting scheme: no voting, 2-out-of-3, 3-out-of-4 voting;
• decision update rate SD = 1 s.

The classification algorithms’ group average perfor-
mance, measured by R, is listed in table 1.

From this table we see that when M ranges from 3 to 6 s,
the SLIC method has significantly higher R values than
the frequency-domain method for different SE and voting
schemes (p < 0.001 from Wilcoxon signed-rank test,
24 degrees of freedom). When the window length is short
(M = 2 s) and when there is no voting, neither method yields
a satisfying performance, although the frequency-domain
method performs better.

Next we see how SD affects the two algorithms’
performance, measured by R. SE is set to be 0.5 s, and a
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Figure 5. Average performance as a function of the window size M for SLIC and the frequency-domain-based method with SD = 0.5, 1 and
2 s, respectively.

3-out-of-4 voting scheme is employed. The result is shown
in figure 5. From this result we can see that again the SLIC
method outperforms the frequency-domain method. Although
the R values were very similar between SD = 0.5, 1 and 2 s,
in practice a smaller SD value is preferred as a large SD would
delay the report of a newly detected light.

3.3. Subject variance

So far we have presented the average performance under a
variety of situations for the 12 good subjects. However, there
also exists significant variance across subjects for the SSVEP
detection. Figure 6 presents the performance of the SLIC
method for each subject. This algorithm performed very
well for half of the subjects (RD > 80%, low error rates),
and only two subjects’ performance was below 20%. For
all subjects the error rates were consistently low, especially
the misclassification rate. So this system can be used by the
majority of the population; even for those that could not have
their SSVEP detected by this system, there were minimal false
positives and misclassifications.

3.4. System response time

The system response time is the time delay from the subject
fixating on a light until the algorithm detects the corresponding
SSVEP. There are theoretical barriers that keep the SSVEP
from being detected instantly, such as the time delay between
eye fixating on a light and SSVEP generated in EEG (about
100 ms) and the minimal window length necessary for the
detection algorithm to have enough frequency resolution
(about 1 s). Increasing the response time of a classification
algorithm could also reduce the robustness (higher error rates)
of the system. Based on table 1, to reach a good performance M

should be no smaller than 3 s for both the traditional frequency-
domain method and the SLIC method.

To measure the response time of our system, one of the
better subjects (subject ID = 4) sat in front of the light display
box and attended to the flashing stimuli consecutively. When
the computer screen showed the corresponding light being
selected, the subject moved to the next stimulus. In 70 s
our system was able to detect the correct stimulus 20 times
(5 times for each of the four stimuli), with two
misclassifications. This corresponds to a 34.3 bit min−1

information transfer rate (ITR) ( 20÷70×60×log2 4 = 34.3).
This response time also includes the time delay between the
classification result being shown on the screen and the subject-
shifting gaze to the next stimulus. As an SSVEP-based BCI
system is very likely to be used in a similar way, we believe
this measure is very close to the real ITR when such a BCI
system is in use. A higher ITR is possible when more stimuli
are used.

4. Conclusions and discussions

In this paper we introduce a low-cost and user-friendly SSVEP-
based BCI system which would be more readily accepted by
consumers. It can not only be used as a way to communicate
with the outside world by those severely disabled but can also
be used by healthy users as a form of entertainment.

We designed an EEG device containing only one active
dry sensor with no conductive gel needed, which greatly
reduces the preparation time and improves the user experience.
All of our experiments were recorded in a regular office
setting which contained significantly more electrical noise than
shielded rooms.

A novel time-domain-based method, SLIC, has been
developed which shows better classification performance than
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Figure 6. Performance of the SLIC method on each subject. Subjects were sorted by decreasing performance. In previous sections, the
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a traditional frequency-domain-based method. Moreover, it
is suitable for classifying visual evoked potentials elicited by
both regular and irregular flash patterns. When designing
the classification method we balance the accuracy and the
robustness of the algorithm such that the SSVEP can be
correctly classified with low error rates in a timely manner. We
showed that this system worked with high performance for 12
out of the 14 subjects over a wide range of parameter selections.
Even for those subjects whose correct light detection rate was
low, their error rates were also low, assuring that the possibility
of triggering a device by mistake is low.

Also importantly, the characteristics of the stimuli,
including their frequency, color, size and pattern, have
been carefully designed such that potential risks of photic-
induced clinical conditions for photosensitive patients can be
significantly reduced.

However, the accuracy and ITR reported in this paper are
not as high as reported by some other studies, specifically [2],
where they reported a 95.5% accuracy and a 58 bit min−1 ITR.
The reason is in part due to the fact that we measured the
accuracy and ITR in a different way than [2]. Also compared
to their traditional gel-based multi-channel EEG system, our
emphasis was on the usability of the system, so only one dry
electrode was employed. We also used a small visual display
and only four lights. Our detection accuracy could be close to
90% (higher ITR is also very likely) if a lower threshold value
were adopted. These factors all contribute to the difference
between the two systems.

To reach a satisfying light detection rate with low error
rates, a window length of at least 3 s is generally required
for both the frequency-domain and the SLIC methods. As
the decision has an update rate of less than 1 s, when a
viewer quickly switched from one stimulus to another, the
EEG being analyzed by the algorithm may still be dominated
by the SSVEP in response to the previous stimulus. This would
in turn delay the detection of the light that is currently being
attended. The current 34.3 bit min−1 ITR would be further
improved if this delay could be reduced in the future.

The detection accuracy of our system can also be further
improved. For example, preliminary studies have shown that
the signal-to-noise-ratio (SNR) of our EEG device can be
further increased, so better performance is expected. Also
in this paper we employed 9, 10, 11 and 12 Hz as the stimuli’s
flashing rate; however, in the SLIC method the power line noise
(60 Hz in USA) can contaminate EEG modulated by the 10 and
12 Hz lights. Better detection performance is thus expected if
other frequency values are used, which is easy to change within
our hardware system. Moreover, adaptive methods could be
used to adjust the thresholds for each individual subject to
further improve the system’s performance.

In this work the stimulus frequencies were between 9 and
12 Hz, which were chosen because they produce strong SSVEP
[15] and are relatively safe [5]. However, these frequencies
were in the Alpha range, where the closed eye EEG-signal is
resident. So far we have not observed any negative effects
caused by Alpha when eyes are opened, although it may be
possible that an Alpha wave will be at just the right frequency
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to cause error when eyes are closed. This is a tradeoff between
the safety/usability of the system and possible false positives
with eyes closed. In this paper we focus on the former and we
assume the user open their eyes most of the time while using
this system. One future improvement of the system could be
to add a ‘do not detect’ button (which may also be controlled
by EEG).

Acknowledgments

We are very thankful to Arnaud Delorme for his valuable
suggestions and help during this study. We also thank Brendan
Allison for encouraging feedback at the early stage of this
project.

References

[1] Beverina F, Palmas G, Silvoni S, Piccione F and Giove S 2003
User adaptive BCIs: SSVEP and P300 based interfaces
PsychNol. J. 1 331–54

[2] Bin G, Gao X, Yan Z, Hong B and Gao S 2009 An online
multi-channel SSVEP-based brain-computer interface using
a canonical correlation analysis method J. Neural Eng.
6 046002

[3] Cheng M, Gao S, Gao S and Xu D 2002 Design and
implementation of a brain–computer interface with high
transfer rates IEEE Trans. Biomed. Eng. 49 181–6

[4] Ding J, Sperling G and Srinivasan R 2006 Attention
modulation of SSVEP power depends on the network
tagged by the flicker frequency Cerebral Cortex 16 1016–29

[5] Fisher R S, Harding G, Erba G, Barkley G L and Wilkins A
2005 Photic- and pattern-induced seizures: a review for the
epilepsy foundation of America working group Epilepsia
46 1426–41

[6] Gao X, Xu D, Cheng M and Gao S 2003 A BCI-based
environmental controller for the motion-disabled IEEE
Trans. Neural. Syst. Rehabil. Eng. 11 137–40

[7] Harding G F and Harding P F 1999 Televised material and
photosensitive epilepsy Epilepsia 40 65–9

[8] Hilbe J M 2009 Logistic Regression Models (London:
Chapman and Hall/CRC Press)

[9] Kelly S P, Lalor E C, Finucane C, McDarby G and Reilly R B
2005 Visual spatial attention control in an independent

brain–computer interface IEEE Trans. Biomed. Eng.
52 1588–96

[10] Lalor E C, Kelly S P, Finucane C, Burke R, Smith R,
Reilly R B and McDarby G 2005 Steady-state VEP-based
brain–computer interface control in an immersive 3D
gaming environment EURASIP J. Appl. Signal Process.
2005 3156–64

[11] McMillan G R, Calhoun G L, Middendorf M S, Schnurer J H,
Ingle D F and Nasman V T 1995 Direct brain interface
utilizing self-regulation of steady-state visual evoked
response (SSVER) Proc. of the RESNA 18th Annual Conf.
(RESNA) pp 693–5

[12] Middendorf M, McMillan G R, Calhoun G L and Jones K S
2000 Brain computer interfaces based on the steady-state
visual-evoked response IEEE Trans. Rehabil. Eng.
8 211–4

[13] Müller-Putz G R, Scherer R, Brauneis C and Pfurtscheller G
2005 Steady-state visual evoked potential (SSVEP)-based
communication: impact of harmonic frequency components
J. Neural Eng. 2 123–30

[14] Müller-Putz G R, Eder E, Wriessnegger S C and
Pfurtscheller G 2008 Comparison of DFT and lock-in
amplifier features and search for optimal electrode positions
in SSVEP-based BCI J. Neurosci. Methods 168 174–81

[15] Pastor M A, Artieda J, Arbizu J, Valencia M and Masdeu J C
2003 Human cerebral activation during steady-state
visual-evoked responses J. Neurosci. 23 11621–7

[16] Sullivan T J, Deiss S R and Cauwenberghs G 2007 A
low-noise, non-contact EEG/ECG sensor IEEE Biomedical
Circuits and Systems Conf. pp 154–7

[17] Sullivan T J, Deiss S R, Jung T P and Cauwenberghs G 2008
A brain-machine interface using dry-contact, low-noise
EEG sensors Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS’2008) pp 1986–9

[18] Sutter E E 1992 The brain response interface: communication
through visually-induced electrical brain responses
J. Microcomput. Appl. 15 31–45

[19] Takahashi T and Tsukahara Y 1976 Influence of color on the
photoconvulsive response Electroencephalogr. Clin.
Neurophysiol. 41 124–36

[20] Wang Y, Wang R, Gao X, Hong B and Gao S 2006 A practical
VEP-based brain–computer interface IEEE Trans. Neural
Syst. Rehabil. Eng. 14 234–9

[21] Welch P D 1967 The use of fast Fourier transform for the
estimation of power spectra: a method based on time
averaging over short, modified periodograms IEEE Trans.
Audio Electroacoust. 15 70–3

10

http://www.psychnology.org/File/PSYCHNOLOGY_JOURNAL_1_4_BEVERINA.pdf
http://dx.doi.org/10.1088/1741-2560/6/4/046002
http://atc.ugr.es/~malopez/img/Design_BCI_High_Rates.pdf
http://dx.doi.org/10.1093/cercor/bhj044
http://dx.doi.org/10.1111/j.1528-1167.2005.31405.x
http://dx.doi.org/10.1109/TNSRE.2003.814449
http://dx.doi.org/10.1111/j.1528-1157.1999.tb00909.x
http://dx.doi.org/10.1109/TBME.2005.851510
http://portal.acm.org/citation.cfm?id=1287086.1287356
http://www.ncbi.nlm.nih.gov/pubmed/10896190
http://dx.doi.org/10.1088/1741-2560/2/4/008
http://dx.doi.org/10.1016/j.jneumeth.2007.09.024
http://www.jneurosci.org/cgi/content/abstract/23/37/11621
http://dx.doi.org/10.1109/BIOCAS.2007.4463332
http://www.isn.ucsd.edu/pubs/iscas08_eeg.pdf
http://dx.doi.org/10.1016/0745-7138(92)90045-7
http://dx.doi.org/10.1016/0013-4694(76)90040-7
http://dx.doi.org/10.1109/TNSRE.2006.875576
http://dx.doi.org/10.1109/TAU.1967.1161901

	1. Introduction
	2. Methods
	2.1. Design of SSVEP-based BCI system
	2.2. Experiment paradigm
	2.3. Data analysis
	2.4. Parameter selection
	2.5. Evaluation of algorithm

	3. Results
	3.1. Classification performance versus the threshold  T  
	3.2. Classification performance as a function of other parameters
	3.3. Subject variance
	3.4. System response time

	4. Conclusions and discussions
	Acknowledgments
	References

